государственное бюджетное общеобразовательное учреждение Самарской области средняя общеобразовательная школа имени Героя Советского Союза Фёдора Николаевича Ижедерова с. Рысайкино муниципального района Похвистневский Самарской области

«PACCMOTPEHA»

На заседании МО Протокол №1 Руководитель МО «ПРОВЕРЕНА»

Заместитель директора школы по УВР

11

Тихонова И.А.

«24» <u>авщета</u> 2020 г.

C. Parenting

Айдреева Л.В.

Рабочая программа по учебному предмету «Астрономия»

11 класс

Учитель: Тихонова И.А.

Пояснительная записка.

Рабочая программа по астрономии для 11 класса разработана на основе следующих нормативных документов:

- -Федерального Закона от 29 декабря 2012 года № 273-ФЗ «Об образовании в Российской Федерации»;
 - -федерального компонента государственного стандарта общего образования;
- -федерального государственного образовательного стандарта основного общего образования,
- —приказа Минобрнауки России от 30.08.2013 № 1015 «Об утверждении Порядка организации и осуществления образовательной деятельности по основным программам начального общего, основного общего и среднего образования»;
- -программы для общеобразовательных учреждений: Астрономия. Базовый уровень. 11 класс: учебно-методическое пособие / Е. К. Страут. М.: Дрофа, 2018./
- -методическое пособие к учебнику Б. А. Воронцова-Вельяминова, Е. К. Страута «Астрономия. Базовый уровень. 11 класс».

Главной целью изучения астрономии является развитие ребенка как компетентной личности путем включения его в различные виды ценностной человеческой деятельности: учеба, познания, коммуникация, профессионально-трудовой выбор, личностное саморазвитие, ценностные ориентации, поиск смыслов жизнедеятельности. С этих позиций обучение рассматривается как процесс овладения не только определенной суммой знаний и системой соответствующих умений и навыков, но и как процесс овладения компетенциями.

На основании требований Государственного образовательного стандарта 2004 г. в содержании календарно-тематического планирования предполагается реализовать актуальные в настоящее время компетентностный, личностно-ориентированный, деятельностный подходы, которые определяют задачи обучения:

Приобретение знаний и умений для использования в практической деятельности и повседневной жизни;

Овладение способами познавательной, информационно-коммуникативной и рефлексивной деятельностей;

Освоение познавательной, информационной, коммуникативной, рефлексивной компетенций.

Компетентностный подход определяет следующие особенности предъявления содержания образования: оно представлено в виде трех тематических блоков, обеспечивающих формирование компетенций. В первом блоке представлены дидактические единицы, обеспечивающие совершенствование навыков научного познания. Во втором — дидактические единицы, которые содержат сведения по теории физики. Это содержание обучения является базой для развития познавательной компетенции учащихся. В третьем блоке представлены дидактические единицы, отражающие историю развития физики и обеспечивающие развитие учебно-познавательной и рефлексивной компетенции. Таким образом, календарно-тематическое планирование обеспечивает взаимосвязанное развитие и совершенствование ключевых, общепредметных и предметных компетенций.

Личностная ориентация образовательного процесса выявляет приоритет воспитательных и развивающих целей обучения. Способность учащихся понимать причины и логику развития физических процессов открывает возможность для осмысленного восприятия всего разнообразия мировоззренческих, социокультурных систем, существующих в современном мире. Систе-

ма учебных занятий призвана способствовать развитию личностной самоидентификации, гуманитарной культуры школьников, их приобщению к современной физической науке и технике, усилению мотивации к социальному познанию и творчеству, воспитанию личностно и общественно востребованных качеств, в том числе гражданственности, толерантности.

Деятельностный подход отражает стратегию современной образовательной политики: необходимость воспитания человека и гражданина, интегрированного в современное ему общество, нацеленного на совершенствование этого общества. Система уроков сориентирована не столько на передачу «готовых знаний», сколько на формирование активной личности, мотивированной к самообразованию, обладающей достаточными навыками и психологическими установками к самостоятельному поиску, отбору, анализу и использованию информации. Это поможет выпускнику адаптироваться в мире, где объем информации растет в геометрической прогрессии, где социальная и профессиональная успешность напрямую зависят от позитивного отношения к новациям, самостоятельности мышления и инициативности, от готовности проявлять творческий подход к делу, искать нестандартные способы решения проблем, от готовности к конструктивному взаимодействию с людьми.

Настоящий календарно-тематический план по астрономии учитывает направленность клас-

Согласно действующему учебному плану по астрономии и с учетом направленности классов, календарно-тематический план астрономии предусматривает следующие варианты организации процесса обучения: в 11 классе предполагается обучение в объеме 34 часов;

В соответствии с этим реализуется модифицированная программа «Астрономия 11 класс», БА Воронцов-Вельяминов, ЕК Страут., в объеме 34 часов.

С учетом уровневой специфики класса выстроена система учебных занятий (уроков), спроектированы цели, задачи, ожидаемые результаты обучения (планируемые результаты), что представлено в схематической форме ниже.

Основой целеполагания является обновление требований к уровню подготовки выпускников, отражающее важнейшую особенность педагогической концепции государственного стандарта— переход от суммы «предметных результатов» (то есть образовательных результатов, достигаемых в рамках отдельных учебных предметов) к межпредметным и интегративным результатам. Такие результаты представляют собой обобщенные способы деятельности, которые отражают специфику не отдельных предметов, а ступеней общего образования. В государственном стандарте они зафиксированы как общие учебные умения, навыки и способы человеческой деятельности, что предполагает повышенное внимание к развитию межпредметных связей курса физики.

Дидактическая модель обучения и педагогические средства отражают модернизацию основ учебного процесса, их переориентацию на достижение конкретных результатов в виде сформированных умений и навыков учащихся, обобщенных способов деятельности. Особое внимание уделяется познавательной активности учащихся, их мотивированности к самостоятельной учебной работе. Это предполагает все более широкое использование нетрадиционных форм уроков, в том числе методики деловых игр, проблемных дискуссий, поэтапного формирования умения решать задачи.

На ступени полной, средней школы задачи учебных занятий (в схеме – планируемый результат) определены как закрепление умений разделять процессы на этапы, звенья, выделять характерные причинно-следственные связи, определять структуру объекта познания, значимые функциональные связи и отношения между частями целого, сравнивать, сопоставлять, классифицировать, ранжировать объекты по одному или нескольким предложенным основаниям, кри-

териям. Принципиальное значение в рамках курса приобретает умение различать факты, мнения, доказательства, гипотезы, аксиомы.

Система заданий призвана обеспечить тесную взаимосвязь различных способов и форм учебной деятельности: использование различных алгоритмов усвоения знаний и умений при сохранении единой содержательной основы курса, внедрение групповых методов работы, творческих заданий, в том числе методики исследовательских проектов.

Спецификой учебной проектно-исследовательской деятельности является ее направленность на развитие личности, и на получение объективно нового исследовательского результата.

Цель учебно-исследовательской деятельности — приобретение учащимися познавательно-исследовательской компетентности, проявляющейся в овладении универсальными способами освоения действительности, в развитии способности к исследовательскому мышлению, в активизации личностной позиции учащегося в образовательном процессе.

Модульный принцип позволяет не только укрупнить смысловые блоки содержания, но и преодолеть традиционную логику изучения материала — от единичного к общему и всеобщему, от фактов к процессам и закономерностям. В условиях модульного подхода возможна совершенно иная схема изучения физических процессов «всеобщее — общее — единичное».

Акцентированное внимание к продуктивным формам учебной деятельности предполагает актуализацию информационной компетентности учащихся: формирование простейших навыков работы с источниками, (картографическими и хронологическими) материалами. В требованиях к выпускникам старшей школы ключевое значение придается комплексным умениям по поиску и анализу информации, представленной в разных знаковых системах (текст, таблица, схема, аудиовизуальный ряд), использованию методов электронной обработки при поиске и систематизации информации.

Специфика целей и содержания изучения астрономии на профильном уровне существенно повышает требования к рефлексивной деятельности учащихся: к объективному оцениванию своих учебных достижений, поведения, черт своей личности, способности и готовности учитывать мнения других людей при определении собственной позиции и самооценке, понимать ценность образования как средства развития культуры личности.

Для информационно-компьютерной поддержки учебного процесса предполагается использование программно-педагогических средств, реализуемых с помощью компьютера (на базе кабинета медиапрограмм с интерактивной доской).

Планируемые предметные результаты.

Требования к уровню подготовки учащихся 11 класса (базовый уровень)

должны знать:

смысл понятий: активность, астероид, астрология, астрономия, астрофизика, атмосфера, болид, возмущения, восход светила, вращение небесных тел, Вселенная, вспышка, Галактика, горизонт, гранулы, затмение, виды звезд, зодиак, календарь, космогония, космология, космонавтика, космос, кольца планет, кометы, кратер, кульминация, основные точки, линии и плоскости небесной сферы, магнитная буря, Метагалактика, метеор, метеорит, метеорные тело, дождь, поток, Млечный Путь, моря и материки на Луне, небесная механика, видимое и реальное движение небесных тел и их систем, обсерватория, орбита, планета, полярное сияние, протуберанец, скопление, созвездия и их классификация, солнечная корона, солнцестояние, состав Солнечной системы, телескоп, терминатор, туманность, фазы Луны, фотосферные факелы, хромосфера, черная дыра, Эволюция, эклиптика, ядро;

определения физических величин: астрономическая единица, афелий, блеск звезды, возраст

небесного тела, параллакс, парсек, период, перигелий, физические характеристики планет и звезд, их химический состав, звездная величина, радиант, радиус светила, космические расстояния, светимость, световой год, сжатие планет, синодический и сидерический период, солнечная активность, солнечная постоянная, спектр светящихся тел Солнечной системы;

смысл работ и формулировку законов: Аристотеля, Птолемея, Галилея, Коперника, Бруно, Ломоносова, Гершеля, Браге, Кеплера, Ньютона, Леверье, Адамса, Галлея, Белопольского, Бредихина, Струве, Герцшпрунга-Рассела, Амбарцумяна, Барнарда, Хаббла, Доплера, Фридмана, Эйнштейна:

должны уметь:

- использовать карту звездного неба для нахождения координат светила;
- выражать результаты измерений и расчетов в единицах Международной системы;
- приводить примеры практического использования астрономических знаний о небесных телах и их системах;
 - решать задачи на применение изученных астрономических законов;
- осуществлять самостоятельный поиск информации естественнонаучного содержания с использованием различных источников, ее обработку и представление в разных формах;
- владеть компетенциями: коммуникативной, рефлексивной, личностного саморазвития, ценностно-ориентационной, смылопоисковой, и профессионально-трудового выбора.

Содержание программы.

Предмет астрономии (2 ч)

Астрономия, ее связь с другими науками. Роль астрономии в развитии цивилизации. Структура и масштабы Вселенной. Особенности астрономических методов исследования. Наземные и космические телескопы, принцип их работы. Всеволноваяастрономия: электромагнитное излучение как источник информации о небесных телах. Практическое применение астрономических исследований. История развития отечественной космонавтики.

Первый искусственный спутник Земли, полет Ю. А. Гагарина. Достижения современной космонавтики.

Основы практической астрономии (5 ч)

Звезды и созвездия. Видимая звездная величина. Небесная сфера. Особые точки небесной сферы. Небесные координаты. Звездные карты. Видимое движение звезд на различных географических широтах. Связь видимого расположения объектов на небе и географических координат наблюдателя. Кульминация светил. Видимое годичное движение Солнца. Эклиптика.

Строение Солнечной системы (2 ч)

Развитие представлений о строении мира. Геоцентрическая система мира. Становление гелиоцентрической системы мира. Конфигурации планети условия их видимости. Синодический и сидерический (звездный) периоды обращения планет.

Законы движения небесных тел (5 ч)

Законы Кеплера. Определение расстояний и размеров тел в Солнечной системе. Горизонтальный параллакс. Движение небесных тел под действием сил тяготения. Определение массы небесных тел. Движение искусственных спутников Земли и космических аппаратов в Солнечной системе.

Природа тел Солнечной системы (8 ч)

Солнечная система как комплекс тел, имеющих общее происхождение. Земля и Луна — двойная планета. Космические лучи. Исследования Луны космическими аппаратами. Пилотируемые полеты на Луну. Планеты земной группы. Природа Меркурия, Венеры и Марса. Планеты-

гиганты, их спутники и кольца. Малые тела Солнечной системы:

астероиды, планеты-карлики, кометы, метеороиды. Метеоры, болиды и метеориты. Астероидная опасность.

Солнце и звезды (6 ч)

Излучение и температура Солнца. Состав и строение Солнца. Методы астрономических исследований; спектральный анализ. Физические методы теоретического исследования. Закон Стефана—Больцмана. Источник энергии Солнца. Атмосфера Солнца. Солнечная активность и ее влияние на Землю. Роль магнитных полей на Солнце. Солнечно-земные связи. Звезды: основные физико-химические характеристики и их взаимосвязь. Годичный параллакс и расстояния до звезд. Светимость, спектр, цвет и температура различных классов звезд. Эффект Доплера. Диаграмма «спектр — светимость» («цвет — светимость»). Массы и размеры звезд. Двойные и кратные звезды. Гравитационные волны. Модели звезд. Переменные и нестационарные звезды. Цефеиды — маяки Вселенной. Эволюция звезд различной массы. Закон смещения Вина.

Наша Галактика — Млечный Путь (2 ч)

Наша Галактика. Ее размеры и структура. Звездные скопления. Спиральные рукава. Ядро Галактики. Области звездообразования. Вращение Галактики. Проблема «скрытой» массы (темная материя).

Строение и эволюция Вселенной (2 ч)

Разнообразие мира галактик. Квазары. Скопления и сверхскопления галактик. Основы современной космологии. «Красное смещение» и закон Хаббла. Эволюция Вселенной. Нестационарная. Вселенная А. А. Фридмана. Большой взрыв. Реликтовое излучение. Ускорение расширения Вселенной. «Темная энергия» и антитяготение.

Жизнь и разум во Вселенной (2 ч)

Проблема существования жизни вне Земли. Условия, необходимые для развития жизни. Поиски жизни на планетах Солнечной системы.

Календарно-тематическое планирование.

№	Тема урока	Кол-	Домашнее	дата					
урока		во ча- сов	задание	план	факт				
	<u> </u>		ние (2 ч.)		1				
1	Предмет астрономии	Поведе	§1						
2	Наблюдения- основа аст-	1	§2						
	рономии								
	2. Практич	еские осн	овы астроно	мии (5 ч.)	1				
3	Звезды и созвездия.	1	§3,4						
	Небесные координаты и								
	звездные карты.								
4	Видимое движение звезд	1	§5						
	на различных географиче-								
	ских широтах		0.6						
5	Годичное движение Солн-	1	§6						
	ца по небу. Эклиптика.	1	67.0						
6	Движение и фазы Луны.	1	§7,8						
7	Затмения Солнца и Луны.	1	§ 9						
/	7 Время и календарь 1 §9 3. Строение Солнечной системы (2 ч.)								
8	Развитие представлений о	1	§10	DI (# 7.)					
U	строении мира	1	810						
9	Конфигурация планет. Си-	1	§11						
	нодический период.								
	1	движени	я небесных т	ел (5 ч.)	1				
10	Законы движения планет	1	§12	, , ,					
	Солнечной системы.								
11	Решение задач на законы Кеплера	1	§12						
12	Определение расстояний и	1	§13						
	размеров тел в Солнечной								
	системе		0.1.1						
13	Движение небесных тел	1	§14						
	под действием сил тяготе-								
	ния								
14	Движение небесных тел	1	§14						
	под действием сил тяготе-								
	ния. Решение задач			(0)					
15			нечной систем	иы (8 ч.)					
15	Общие характеристики	1	§15						
16	планет Солнечная система как	1	§16						
10	комплекс тел, имеющих	1	810						
	общее происхождение								
17	Система Земля-Луна	1	§17						
18	Планеты земной группы	1	§18						
19	Далекие планеты	1	§19						
20	Планеты – карлики и ма-	1	§20						
	лые тела								
21	Обобщающее повторение	1	§15-20						
22	Контрольная работа №1	1							
	6	Солние и	⊥ ı звезды (6 ч.)	<u> </u>	<u> </u>				
	V •		3235ADI (0 10)						

	Итого:	34				
34	Итоговый тест	1				
33	Жизнь и разум во Вселенной	1	§28			
22			ум во Вселе	нной (1 ч.)	T	
32	Контрольная работа №2	1				
31	Основы современной космологии	1	§27			
30	Другие звездные системы- галактики	1	§26			
29	Наша Галактика	1	§25			
	7. Наша Галактика – Млечн	ый Пут		е и эволюци	я Вселені	ной (4 ч.)
	нарные звезды					
28	Переменные и нестацио-	1	§24			
27	Решение задач.	1	§23			
26	Массы и размеры звезд	1	§23			
25	Расстояния до звезд		§22			
24	Солнце – ближайшая звезда. Атмосфера Солнца.	1	§21			
	да. Энергия и температура Солнца.					
23	Солнце – ближайшая звез-	1	§21			